square-pyramidal conformation, no unusual bond distances or angles indicative of strain are apparent within the TMC macrocycle as a consequence of its coordination to $\mathrm{Co}^{\mathrm{II}}$.

References

Barefield, E. K., Bianchi, A., Billo, E. J., Connolly, P. J., Paoletti, P., Summers, J. S. \& Van Derveer, D. G. (1986). Inorg. Chem. 25, 4197-4202.
Bosnich, B., Poon, C. K. \& Tobe, M. L. (1965). Inorg. Chem. 4, 1102-1112.
Campana, C. F., Shepherd, D. F. \& Litchman, W. M. (1981). Inorg. Chem. 20, 4039-4044.

D’Aniello, M. J. Jr, Mocella, M. T., Wagner, F., Barefield, E. K. \& Paul, I. C. (1975). J. Am. Chem. Soc. 97, 192-194.
hodges, K. D., Woollmann, R. G., Kessel, S. L., Hendrickson, D. N., Van Derveer, D. G. \& Barefield, E. K. (1979). J. Am. Chem. Soc. 101, 906-917.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Sheldrick, G. M. (1984). SHELXTL Users' Manual, revision 4. Nicolet XRD Corporation, Madison, Wisconsin, USA.
Wagner, F. \& Barefield, E. K. (1976). Inorg. Chem. 15, 408-417.
Wagner, F., Mocella, M. T., D'Aniello, M. J. Jr, Wang, A. H.-J. \& Barefield, E. K. (1974). J. Am. Chem. Soc. 96, 2625-2627.

Structure of Dichlorobis(trimethylphosphine oxide)cobalt(II)

By Marie-Joëlle Menu, Michel Simard and André L. Beauchamp
Département de Chimie, Université de Montréal, CP 6128, Succ. A, Montréal, Québec, H3C 3J7, Canada
Herbert König, Michèle Dartiguenave and Yves Dartiguenave
Laboratoire de Chimie de Coordination, 205 route de Narbonne, 31077-Toulouse, France
and Hans-Friedrich Klein
Anorganische Chemie I, Technische Hochschule, Darmstadt, Federal Republic of Germany

(Received 3 February 1989; accepted 15 March 1989)

Abstract

CoCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{OP}\right)_{2}\right], \quad M_{r}=313.99\), orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=10 \cdot 660$ (4), $b=11 \cdot 187$ (6), $c=$ $11.807(3) \AA, \quad V=1408.0 \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.481 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{CuK} K)=1.54178 \AA, \quad \mu=$ $15.64 \mathrm{~mm}^{-1}, F(000)=644, T=170 \mathrm{~K}$, final $R=$ 0.057 for 2149 unique observed reflections. Co has a slightly distorted tetrahedral coordination $\left[\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl} \mathrm{113.6(1)} \mathrm{O}-\mathrm{Co}-,\mathrm{O} 105 \cdot 6(2)^{\circ}\right]$ and forms normal $\mathrm{Co}-\mathrm{Cl}[2 \cdot 262$ (2) \AA] and $\mathrm{Co}-\mathrm{O}$ [1.971 (5) \AA av.] distances.

Introduction. Dichlorobis(tertiary phosphine oxide)cobalt(II) complexes have been known for some time (Hunter, Langford, Rodley \& Wilkins, 1968; De Bolster, Boutkan, van der Knaap, van Zweeden, Kortram \& Groeneveld, 1978; Schmidt \& Yoke, 1971), but they still raise interest because cobalt acts as a catalyst in phosphine oxidation (Yamamoto, 1986). On the basis of X-ray diffraction studies, the triphenylphosphine oxide and tribenzylphosphine oxide complexes have been described as tetrahedral four-coordinate $\mathrm{Co}^{\mathrm{II}}$ complexes (Mangion, Smith \& Shore, 1976; De Almeida Santos \& Mascarenhas, 1979). The present $\mathrm{CoCl}_{2}\left(\mathrm{OPMe}_{3}\right)_{2}$ compound formed as a by-product of the slow reaction

0108-2701/89/111697-03\$03.00
of $\mathrm{CoCl}\left(\mathrm{PMe}_{3}\right)_{3}$ with CO_{2} and of $\mathrm{CoCl}-$ $\left(\mathrm{Ph}_{2} \mathrm{C}_{2} \mathrm{O}\right)\left(\mathrm{PMe}_{3}\right)_{3}$ with H_{2}, because traces of oxygen were present (König \& Klein, 1989). It crystallized out in a pure state from the benzene solution as deep-blue, air-stable crystals. Increasing the amount of O_{2} gave rise to untractable mixtures from which only trimethylphosphine oxide could be separated and characterized. The $\mathrm{CoCl}_{2}\left(\mathrm{OPMe}_{3}\right)_{2}$ complex is more conveniently synthesized by reacting OPMe_{3} with CoCl_{2} (Hunter et al., 1968; De Bolster et al., 1978; Schmidt \& Yoke, 1971).

Experimental. Crystal, $0.065 \times 0.11 \times 0.19 \mathrm{~mm}$, cut from a large fragment. Enraf-Nonius CAD-4 diffractometer, Niggli matrix of reduced cell indicative of orthorhombic primitive lattice, Laue symmetry and cell dimensions checked with oscillation photographs. Refined cell parameters from 25 centered reflections $\left(20<\theta<25^{\circ}\right)$, space group $P 2_{1} 2_{1} 2_{1}$, systematic absences ($h 00, h \neq 2 n ; 0 k 0, k \neq 2 n ; 00 l$, $l \neq 2 n$) identified in full data set. Intensity data collected by ω-scan technique, width $=(1.00+0.14$ $\tan \theta)^{\circ}$, scan speed $4^{\circ} \mathrm{min}^{-1}$, graphite-monochromatized $\mathrm{Cu} K \bar{\alpha}$ radiation, $2 \theta_{\text {max }}=140^{\circ}$, one asymmetric unit ($+h+k+l$ and $-h+k+l$ octants) measured.
© 1989 International Union of Crystallography

Orientation checked every 200 measurements, intensity of seven standards checked every hour, max. fluctuations $\pm 2 \cdot 9 \%, 2671$ independent reflections, 2163 with $I>3 \sigma(I)$. Data corrected for Lp and absorption (Gaussian integration, grid $10 \times 10 \times 10$, transmission range $0.04-0.29$).
Structure solved with MULTAN (Main, Woolfson, Lessinger, Germain \& Declercq, 1974). Refinement on $\left|F_{o}\right|$ by full-matrix least squares using the SHELX package (Sheldrick, 1976). Anisotropic refinement for all non-H atoms. H-atom coordinates fixed at idealized values ($s p^{3}$ hybridization, $\mathrm{C}-\mathrm{H}=0.97 \AA$, isotropic B initially refined, then fixed in last cycles, $U=0.064 \AA^{2}$). Reffections (14) probably strongly affected by extinction rejectepd in final refinement. Final $R=0.057, w R=0.056$, weights based on counting statistics, $w=1 /\left[\sigma^{2}(F)+\right.$ $\left.0.00005 F^{2}\right], S=2 \cdot 12$; (shift $/ \sigma$), mean $=0.007$, max. $=0.04$. Residual electron density on final ΔF map: peaks of $\pm|0 \cdot 6-0 \cdot 8|$ e \AA^{-3} near Co, P and Cl , general background below $\pm 0.6 \mathrm{e} \AA^{-3}$. Enantiomorph refined independently, $R=0.129, w R=0.137$ and S $=5.82$ (large $f^{\prime \prime}$ contribution). Scattering factors from Cromer \& Mann (1968) for $\mathrm{Co}, \mathrm{Cl}, \mathrm{P}, \mathrm{O}$ and C; from Stewart, Davidson \& Simpson (1965) for H. Anomalous-dispersion factors f^{\prime} and $f^{\prime \prime}$ for Co and Cl from Cromer \& Liberman (1970). Coordinates and equivalent isotropic thermal parameters are given in Table 1.*

Discussion. The $\mathrm{CoCl}_{2}\left(\mathrm{OPMe}_{3}\right)_{2}$ molecule is shown in Fig. 1. Intramolecular bond lengths and angles are given in Table 2. The Co coordination is approximately tetrahedral. The departure of the $\mathrm{Cl}(1)$ -$\mathrm{Co}-\mathrm{Cl}(2)$ and $\mathrm{O}(1)-\mathrm{Co}-\mathrm{O}(2)$ angles [113.6 (1) and $105 \cdot 6$ (2) ${ }^{\circ}$, respectively] from the tetrahedral value was also noted for $\mathrm{CoCl}_{2}\left\{\mathrm{OP}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}\right\}_{2}(\mathrm{De}$ Almeida Santos \& Mascarenhas, 1979). In $\mathrm{CoCl}_{2}-$ $\left(\mathrm{OPP}_{3}\right)_{2}$, the $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ angle is much smaller [96.4 (3) ${ }^{\circ}$] (Mangion et al., 1976), and the relatively long Co-O bonds [1.999 (7) Å av.] are probably correlated with this small angle. However, no similar explanation can be proposed for our $\mathrm{Co}-\mathrm{O}$ distances in the PMe_{3} complex [1.969 (5) \AA] being significantly longer than those of $\mathrm{CoCl}_{2}\left\{\mathrm{OP}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}\right\}_{2}$ $[1.928$ (7) \AA]. There are no unusual features in the coordinated phosphine oxide ligand, compared with $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{OPEt}_{3}\right)_{2}$ (Alnaji, Dartiguenave, Dartiguenave, Simard \& Beauchamp, 1989), $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}-$ $\left(\mathrm{OPMe}_{3}\right)_{2}$ (Cotton \& Soderberg, 1963), $\mathrm{CoCl}_{2}-$

[^0]Table 1. Refined coordinates ($\times 10^{5}, \mathrm{C}$ and $\mathrm{O} \times 10^{4}$) and equivalent isotropic temperature factors
$\left(\AA^{2} \times 10^{3}\right)$

$U_{\text {eq }}=\frac{1}{3} \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {cq }}$
Co	57447 (12)	50471 (11)	6315 (10)	33
$\mathrm{Cl}(1)$	37738 (19)	47073 (16)	12642 (16)	41
$\mathrm{Cl}(2)$	58142 (21)	58451 (17)	-11278 (16)	42
$\mathrm{P}(1)$	77564 (20)	68507 (17)	15945 (17)	32
$\mathrm{P}(2)$	65728 (21)	24808 (17)	14629 (17)	34
$\mathrm{O}(1)$	6588 (5)	6098 (4)	1723 (4)	36
O(2)	6698 (5)	3527 (5)	659 (5)	44
C(11)	7441 (8)	8159 (7)	776 (7)	44
C(12)	8970 (8)	6046 (8)	920 (7)	49
C(13)	8321 (8)	7317 (7)	2925 (7)	41
C(21)	6087 (8)	2918 (6)	2850 (7)	40
$\mathrm{C}(22)$	5481 (9)	1414 (8)	946 (7)	54
C(23)	8046 (8)	1752 (7)	1615 (7)	48

Table 2. Interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$

$\mathrm{Co}-\mathrm{Cl}(1)$	$2 \cdot 262$ (2)	$\mathrm{P}(1)-\mathrm{C}(12)$	1.766 (9)
$\mathrm{Co}-\mathrm{Cl}(2)$	$2 \cdot 262$ (2)	$\mathrm{P}(1)-\mathrm{C}(13)$	1.761 (8)
$\mathrm{Co}-\mathrm{O}(1)$	1.962 (5)	$\mathrm{P}(2)-\mathrm{O}(2)$	1.513 (6)
$\mathrm{Co}-\mathrm{O}(2)$	1.981 (5)	$\mathrm{P}(2)-\mathrm{C}(21)$	1.786 (8)
$\mathrm{P}(1)-\mathrm{O}(1)$	1.511 (6)	$\mathrm{P}(2)-\mathrm{C}(22)$	1.775 (9)
$\mathrm{P}(1)-\mathrm{C}(11)$	1.786 (8)	$\mathrm{P}(2)-\mathrm{C}(23)$	1.779 (9)
$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{Cl}(2)$	113.6 (1)	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(12)$	108.2 (4)
$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{O}(1)$	108.0 (2)	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(13)$	107.7 (4)
$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{O}(2)$	$109 \cdot 2$ (2)	$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{C}(13)$	107.6 (4)
$\mathrm{Cl}(2)-\mathrm{Co}-\mathrm{O}(1)$	$110 \cdot 6$ (2)	$\mathrm{Co}-\mathrm{O}(2)-\mathrm{P}(2)$	129.0 (3)
$\mathrm{Cl}(2)-\mathrm{Co}-\mathrm{O}(2)$	109.7 (2)	$\mathrm{O}(2)-\mathrm{P}(2)-\mathrm{C}(21)$	112.9 (3)
$\mathrm{O}(1)-\mathrm{Co}-\mathrm{O}(2)$	$105 \cdot 6$ (2)	$\mathrm{O}(2)-\mathrm{P}(2)-\mathrm{C}(22)$	111.2 (4)
$\mathrm{Co}-\mathrm{O}(1)-\mathrm{P}(1)$	$130 \cdot 2$ (3)	$\mathrm{O}(2)-\mathrm{P}(2)-\mathrm{C}(23)$	$109 \cdot 9$ (4)
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(11)$	110.8 (3)	$\mathrm{C}(21)-\mathrm{P}(2)-\mathrm{C}(22)$	108.0 (4)
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(12)$	111.4 (4)	$\mathrm{C}(21)-\mathrm{P}(2)-\mathrm{C}(23)$	$106 \cdot 8$ (4)
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(13)$	110.9 (3)	$\mathrm{C}(22)-\mathrm{P}(2)-\mathrm{C}(23)$	$107 \cdot 8$ (4)

Fig. 1. ORTEP drawing (Johnson, 1965) of the dichlorobis(trimethylphosphine oxide)cobalt(II) molecule. Non-H atoms are represented at 50% probability level, H atoms by spheres of arbitrary size.
$\left(\mathrm{OPPh}_{3}\right)_{2}$ (Mangion et al., 1976) and $\mathrm{CoCl}_{2}\{\mathrm{OP}$ $\left.\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}\right\}_{2}$ (De Almeida Santos \& Mascarenhas, 1979).

Support of this research through the Conseil de Recherche en Sciences Naturelles et en Génie du Canada, the Centre National de la Recherche Scientifique, the Coopération Interuniversitaire France-

Québec, and the Deutscher Akademischer Austauschdienst is gratefully acknowledged.

References

Alnai, O., Dartiguenave, M., Dartiguenave, Y., Simard, M. \& Beauchamp, A. L. (1989). In preparation.
Cotton, F. A. \& Soderberg, R. H. (1963). J. Am. Chem. Soc. 85, 2402-2406.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
De Almeida Santos, R. H. \& Mascarenhas, Y. (1979). J. Coord. Chem. 9, 59-64.
De Bolster, M. W. G., Boutkan, C., van der Knaap, T. A., van Zweeden, L., Kortram, I. E. \& Groeneveld, W. L. (1978). Z. Anorg. Allg. Chem. 443, 269-278.

Hunter, S. H., Langford, V. M., Rodley, G. A. \& Wilkins, C. J. (1968). J. Chem. Soc. A, pp. 305-308.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
König, H. \& Klein, H. F. (1989). Work in progress.
Main, P., Woolfson, M. M., Lessinger, L., Germain, G. \& Declerce, J.-P. (1974). MULTAN. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Mangion, M. M., Smith, R. \& Shore, S. G. (1976). Cryst. Struct. Commun. 5, 493-500.
Schmidt, D. D. \& Yoke, J. T. (1971). J. Am. Chem. Soc. 93, 637-640.
Sheldrick, G. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Yamamoto, K. (1986). Polyhedron, 5, 913-915.

Neutron Structure Refinement of Barium Oxalate-Oxalic Acid Dihydrate, $\mathrm{BaC}_{\mathbf{2}} \mathrm{O}_{\mathbf{4}} \cdot \mathbf{H}_{\mathbf{2}} \mathrm{C}_{\mathbf{2}} \mathrm{O}_{\mathbf{4}} \cdot \mathbf{2} \mathrm{H}_{\mathbf{2}} \mathrm{O}$ and of Related Nonstoichiometric Hydrates

By O. Chaix-Pluchery and J. C. Mutin*
Laboratoire de Recherche sur la Réactivité des Solides, Faculté des Sciences Mirande, BP 138, 21004 Dijon CEDEX, France
J. Bouillot
Institut Laue-Langevin, 156X, 38042 Grenoble CEDEX, France
and J. C. Niepce
Laboratoire de Recherche sur la Réactivité des Solides, Faculté des Sciences Mirande, BP 138, 21004 Dijon CEDEX, France

(Received 16 September 1988; accepted 1 March 1989)

Abstract

BaC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=351 \cdot 38\), monoclinic, $C 2 / c, a=14 \cdot 446$ (2), $b=5 \cdot 4175$ (6), $c=$ $12 \cdot 450$ (1) $\AA, \beta=116 \cdot 17(1)^{\circ}, V=874$ (4) $\AA^{3}, Z=4$, $D_{x}=2.669 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda=1.2651 \AA, \quad \mu(n)=$ $0.137 \mathrm{~mm}^{-1}, \quad F(000)=269 \cdot 94$, room temperature, final $R=0.021$ for 768 independent reflections. The neutron refinement of the crystal structure of the dihydrate compound confirms the structure previously reported from X-ray measurements. The positions of the two kinds of H atoms are determined and the environment and geometry of the water molecules analysed. The crystal structures of mosaic crystals with various water contents ε, from dehydration of single crystals followed by rehydration with $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{D}_{2} \mathrm{O}$, were also refined. Only

[^1]0108-2701/89/111699-07\$03.00
limited changes of the structural parameters of the dihydrate mosaic crystals with respect to the singlecrystal ones are observed ($R=0.022$ and 0.045 for the hydrogenated and deuterated crystals, respectively). In mosaic crystals with $\varepsilon \neq 2$, the initial crystallographic sites of water are preserved whatever the water content ($\varepsilon=0.7, \quad R=0.072 ; \quad \varepsilon=0.3$, $R=0.058$). However, the oxalate ions in such crystals present abnormally large displacement parameters along the y direction; this is tentatively explained by the random removal of water molecules which leads to the formation of two intermolecular distances along this direction.

Introduction. Previous thermogravimetry and X-ray diffraction studies of the thermal dehydration of barium oxalate-oxalic acid dihydrate $\mathrm{BaC}_{2} \mathrm{O}_{4}$.-
© 1989 International Union of Crystallography

[^0]: * Lists of refined temperature factors, hydrogen coordinates, and observed and calculated structure-factor amplitudes, together with a stereoview of the unit cell, have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52012 (14 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * To whom correspondence should be addressed.

